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Interdependency has been hailed as a curse and a blessing for 
achieving the United Nations Sustainable Development Goals 
(SDGs), which encompass 169 sustainability targets1–3. On the 

one hand, historical advances toward some sustainable development 
targets (for example, SDG 2: Zero Hunger, SDG 8: Decent Work 
and Economic Growth) have caused declines in others (for example, 
SDG 6: Clean Water and Sanitation), highlighting trade-offs that 
might impede achieving all SDGs by 20302,4–6. On the other hand, 
synergies between SDG targets are often proposed as our best hope 
for getting back on track to reach the 2030 goals; if multiple SDGs 
can be advanced at the same time, progress may be faster and more 
cost-effective7,8. To that end, research and policy pieces often focus 
on interdependent targets, aiming to maximize synergies, avoid or 
mediate trade-offs, and ignore other possible outcomes5,9–11.

Acting on interdependent SDGs requires that decision mak-
ers can first distinguish among all possible interdependent and 
independent outcomes. However, terms like ‘synergy’, ‘trade-off ’, 
‘co-benefit’ and ‘win–win’ are rarely defined in the sustainability 
or ecosystem services literatures1,12. At best, synergies are defined 
as causal positive relationships and trade-offs as causal negative 
relationships1,11, where correlation strength is sometimes given a 
nominal score (for example, +1 is ‘creates conditions that further 
another target’ and +3 is ‘inextricably linked to the achievement 
of another target’)1,9. These scores have been applied differently by 
different teams1, highlighting how difficult they are to use consis-
tently in practice. Furthermore, they do not clarify how synergies 
and trade-offs relate to specific outcomes. For instance, an action 
that degrades two target indicators will create a positive correlation 
(that is, synergy), but not a win–win. What, then, is the difference 
between a synergy and a win–win? And can win–win solutions ever 
be created from trade-offs? After finding limited published guid-
ance for navigating these terms, our working group developed an 

explicit framework for one early step in the SDG implementation 
process: assessing relationships among intervention targets and dis-
tinguishing among desirable and undesirable outcomes11.

Researchers, practitioners and decision makers can use the 
framework described herein to compare interventions with just a few 
targets, such as the pairs proposed under the International Union 
for Conservation of Nature’s Global Standard for Nature-based 
Solutions10, or to complete all pairwise comparisons within the full 
SDG target network — an increasingly common exercise5,11,13. With 
three possible outcomes per target (win, neutral or lose), there are 
nine possible correlated or uncorrelated joint outcomes for two 
targets (lose–lose, lose–neutral and so on; Fig. 1). Unlike previous 
frameworks, this comparative process retains uncorrelated, neutral 
outcomes, which can be valuable management options to consider 
during multi-criteria decision making. Below, we illustrate how to 
use our framework using examples related to human infectious dis-
ease control and conservation.

Start with baselines and outcome directions
To define the relationship between any two targets, one must know 
how each target has changed, is changing or will change. This is 
accomplished by first defining the spatial and temporal baseline 
for each target. Baselines are usually defined as the conditions that 
exist before an intervention, such as the prevalence of parasites in 
a community before a school deworming programme begins. Some 
baselines will be considered relatively ‘healthy’ and thus worth 
maintaining, such as a lake that already has high quality water 
before an intervention. Other baselines will be considered relatively 
‘unhealthy’ and worth improving, such as a eutrophic and polluted 
lake that receives a high volume of agricultural runoff. Stakeholders 
might have different perspectives on what the baselines are, and 
these differences are important to document and discuss. From 
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chosen baselines, we can then define the observed or expected 
trajectories through time or space (win, lose or neutral), where a 
decline from relatively healthy conditions indicates degradation 
(lose), no change from baseline indicates stasis (neutral), and an 
increase from relatively unhealthy conditions indicates improve-
ment (win; Fig. 1). A ‘win’ can occur even when starting conditions 
are ‘healthy’ (for example, what starts as acceptable water quality 
becomes pristine water quality; Fig. 1a) and a ‘loss’ can occur even 
when baselines are ‘unhealthy’ (for example, what starts as moder-
ate disease burden becomes high disease burden; Fig. 1b); it is the 
relative change from baseline that determines the outcome direc-
tion. The outcome directions for any two targets determine where 
the intervention falls within the nine-panel outcome space in Fig. 1.

In this direction-based framework, neutral outcomes do not have 
an inherent value judgement, where we define ‘values’ as ‘reference 
points for evaluating things as good or bad’3. There are many types 
of values (for example, economic value and societal value), and 
value judgements often differ among stakeholders3. For instance, 
along the Senegal River in West Africa, dam construction extirpated 
native, migratory prawns. Before the dam, prawns ate the snails that 
are intermediate hosts for human schistosome parasites, so prawn 
extirpation contributed to high human disease burdens that per-
sist to this day14,15—a lose–lose scenario for ecosystems and human 
health (but a win for local agriculture, because the dam supported 
agricultural irrigation). Any interventions that preserve the cur-
rent, high disease burdens (an ‘unhealthy’ baseline) would be called 
‘neutral’ scenarios for human health in our framework, even though 
those interventions might be negatively valued by people living near 
the Senegal River (red neutral–neutral panel; Fig. 1b). In contrast, 
schistosomiasis has been eliminated in Japan16, so neutral interven-
tions in Japan that preserve the contemporary, ‘healthy’, disease-free 
baseline would be positively valued (blue neutral–neutral panel; Fig. 
1a). These examples show that the inherent values associated with 
neutral outcomes depend on the values associated with the baseline 
conditions (Fig. 1).

If desired, value judgements for baselines can be used to deter-
mine a ‘level of urgency’ for any given pair of targets11. The most 
urgent targets might be those that are below standards (‘mutually 
unhealthy’) and declining. For these scenarios, any neutral out-
comes will be negatively valued, and thus only interventions with 
win–win outcomes will be positively valued (one blue panel in Fig. 
1b). In contrast, targets that are above standards (‘mutually healthy’) 
and increasing might have low urgency, and neutral–neutral, win–
neutral, neutral–win or win–win outcomes will be positively valued 
(Fig. 1a). In the first case, neutral outcomes might be best avoided, 
whereas in the second case, considering neutral outcomes expands 
management options for positively valued outcomes. Again, these 
examples show that the values associated with outcomes depend on 
the values associated with the baseline conditions (Fig. 1)17.

Neutral outcomes may often be ignored in the sustainability 
and ecosystem services literatures because most contemporary 
baselines are considered mutually unhealthy, but mutually healthy 
baselines do exist (central panel in Fig. 1a; dashed lines in Fig. 2b). 
For instance, it is far more efficient to prevent a disease vector from 
invading than it would be to control or eradicate an established vec-
tor (for example, the mosquitoes that spread Chikungunya virus in 
Italy18 or avian malaria in Hawaii19). Neutral–neutral interventions 
that prevent degradation are analogous to ‘preventative healthcare’, 
where ‘an ounce of prevention is worth a pound of cure’20.

Unfortunately, many systems are already degraded and need ‘sick 
care’ to return to historical, mutually healthy baselines. For instance, 
restoring logged forests might increase ecosystem integrity and 
improve human health, because increasing upstream forest cover is 
associated with reduced downstream childhood diarrhoea risk (Fig. 
2)21,22—a win–win if measured from mutually unhealthy, degraded 
baselines. This scenario would be a net neutral–neutral outcome 

if the baselines were intact forests and low childhood diarrhoea 
(‘mutually healthy’ baselines), which were degraded by logging 
forests (a lose–lose) and later restored by reforestation to ‘healthy’ 
baselines (a win–win; solid lines in Fig. 2b). Although this net neu-
tral–neutral scenario has the same baselines and outcomes as would 
a ‘preventative healthcare’ neutral–neutral scenario (that is, never 
unsustainably logging forests in the first place), it involves ecosys-
tem degradation, lost human lives and resources spent on reforesta-
tion and healthcare. As in this example, many win–win solutions are 
sick care for degraded systems, and thus represent corrective actions 
for when preventative care has failed.

Positive correlations suggest win–win potential
In the sustainability literature, synergies are often defined as causal 
positive relationships between two targets or outcomes9,11. Such 
relationships can exist either because one outcome causes the other 
(for example, an improved conservation outcome reduces human 
disease burdens, or reduced human disease burdens improve eco-
system integrity) or because a shared driver affects each outcome 
(for example, invasive rat control benefits both human health and 
native wildlife populations through different processes, with rats 
being a common driver; see section ‘An example with invasive rats 
in Hawai’i’). Given this definition and our framework, all lose–lose 
and win–win scenarios are synergies, and some neutral–neutral sce-
narios are also synergies—all outcomes that occur on the positive 
diagonal in Fig. 1. For example, all three synergistic dual-outcomes 
(win–win, lose–lose and neutral–neutral) are possible when forest 
restoration reduces diarrheal risk, depending on the specific base-
lines and outcome directions considered (Fig. 2). This results in an 
important corollary: lose–lose scenarios have win–win potential, 
and thus practitioners and decision makers seeking win–win solu-
tions could start by searching for lose–lose scenarios.

In contrast, win–lose and lose–win outcomes represent trade-offs 
between conservation and human health, where the outcomes are 
linked by causal, negative relationships, or a shared driver affects 
the two outcomes in opposite directions. For example, in some parts 
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Fig. 1 | A framework for evaluating intervention outcomes and their 
associated values. Given any two intervention targets (for example, one 
related to human health and one related to conservation), there are nine 
possible joint outcomes that can be differentiated by defining changes 
from baselines (‘win’, ‘neutral’ or ‘lose’) using data or logic. The joint 
outcomes on the positive diagonal are positively correlated synergies, 
and joint outcomes on the negative diagonal are negatively correlated 
trade-offs. a,b, The values (‘good’ or ‘bad’) associated with outcomes 
are subjective and depend on the values associated with their baselines; 
here we show the values associated with changes from mutually ‘healthy’ 
baselines (a) and mutually ‘unhealthy’ baselines (b).
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of Africa, declines in water quality can extirpate freshwater crabs 
and the larval black flies that attach to them. Reduced black fly lar-
vae abundance causes fewer adult black flies to transmit onchocer-
ciasis to humans, such that a loss for freshwater biodiversity can be 
a win for human health (lose–win). Because the biodiversity and 
health outcomes are negatively correlated, acting on this existing 
relationship cannot produce a win–win scenario23. For instance, 
restoring the freshwater crabs (a conservation improvement from 
an ‘unhealthy’ baseline) could cause black flies and onchocerciasis 
to increase again (a health decline from a ‘healthy’ baseline), creat-
ing the opposite trade-off scenario (win–lose). Given the difficulty 
in changing underlying correlations in such trade-off scenarios, the 
sustainability and ecosystem services literatures often recommend 
avoiding or mediating trade-offs.

However, the best—but perhaps most difficult—solutions might 
be those that re-engineer, bypass or break negative associations 
between conservation and human health5,6. For instance, in the 
example where damming the Senegal River extirpated prawns and 
increased schistosomiasis in humans, there is a lose–win trade-off 
between prawns and agriculture and a lose–win trade-off between 
human infectious disease control and agriculture. To break these 
negative associations, efforts are underway to design a prawn lad-
der for the dam that can restore prawn migration upstream from 
dams. This technological solution would maintain the dam and 

agricultural gains while also restoring prawns and human health, 
turning a trade-off scenario into a win–win.

Finally, there are conservation and health outcomes that are con-
sistently uncorrelated, where an intervention could affect one sector 
but not the other (win–neutral, neutral–win, lose–neutral and neu-
tral–lose; Fig. 1, middle column and row). For instance, consider 
regions where malaria burdens are high (‘unhealthy’ baseline) and 
freshwater ecosystems are either degraded or pristine (‘unhealthy’ 
or ‘healthy’ baseline). From these baselines, insecticide-treated bed 
nets have produced exceptional reductions in malaria burdens at low 
cost24,25, with negligible environmental consequences on non-target 
species (when bed nets have not been co-opted for fishing26). This 
is a win–neutral scenario for health and conservation relative to 
baselines, and a preferred conservation outcome over other possible 
interventions, such as wetland draining. These neutral outcomes 
are often overshadowed by win–wins within SDG target networks11, 
but once identified, win–neutral interventions implemented by only 
one sector may promote rapid progress toward achieving SDG goals.

Adding complexity to pairwise comparisons
An intervention might have several conflicting or complementary 
effects on ecosystem integrity, human health or other sectors. To 
understand and make decisions in these complex systems, it is com-
mon in the SDG literature to create networks of all targets and then 
to evaluate the relationship between each pair5,11,13. For example, 
in Table 1, we show how 9 out of the 17 SDGs might have been 
impacted in India by a national policy banning diclofenac, a vet-
erinary medicine that caused widespread vulture declines when 
vultures fed on toxic livestock carcasses (Fig. 3)27,28. The diclofenac 
ban was implemented to conserve vultures (SDG 15: Life on Land), 
which was expected to reduce carrion availability, free-ranging dog 
populations, and human rabies risk from dog bites (SDG 3: Good 
Health and Well-being; Fig. 3a, Table 1). Banning diclofenac was 
also expected to have positive impacts (wins) on many other SDGs, 
including reducing poverty and improving water quality (Table 
1)29–31. The diclofenac ban was not expected to create any trade-offs 
among SDGs, except perhaps by increasing aeroplane collisions 
with vultures27. Of course, it is unlikely that any intervention in a 
complex system will improve everything, and there were several 
neutral outcomes that would likely maintain ‘unhealthy’ baselines 
(Table 1). Therefore, in this example, all pairwise comparisons are 
expected to be win–wins or win–neutrals. Though neutral out-
comes are often ignored, retaining them helps to identify interven-
tions that make improvements in some sectors without creating or 
exacerbating problems in others.

In addition to comparing many targets or SDGs, decision makers 
might compare many interventions using tools like multi-criteria 
decision-making analyses. When comparing intervention options 
in this way, it is useful to consider not only their qualitative out-
comes, but also their effect sizes. To do this with our nine-panel 
framework, the baseline condition can be represented by the plot 
origin, and neutral outcomes can be placed along the axes that mea-
sure impacts on each target (Fig. 4). Associations between targets 
can be represented as vectors, and points along vectors are possible 
endpoints for interventions acting on those relationships. Endpoints 
can be constrained by some budget or other limited resource pool 
(Fig. 4). Therefore, intervention ranking and subsequent selection 
will depend on the priorities and resources available to decision 
makers or practitioners. Our framework makes it easier to define 
and compare these options.

Finally, the relationships between two targets might be nonlinear 
(Fig. 4, Intervention Options 2 and 3) or involve other complexities, 
such as time lags. For instance, forest restoration can only increase 
native biodiversity until the historical baseline is achieved. After that 
point, improvement or restoration—a win in our framework—is no 
longer possible and the conservation outcome direction switches 
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Table 1 | Banning diclofenac in India and surrounding nations after widespread vulture declines was expected to impact 9 out of  
17 Sustainable Development Goals, all of which had relatively unhealthy baselines in 2008

Sustainable Development Goal Baseline (in 2008) expected direction of change References

1. No Poverty Unhealthy: 31% below poverty line in 
2009.

Win: fewer free-ranging dogs and fewer rabid dogs should 
lead to fewer bites, reducing lost wages due to sickness and/
or treatment and money spent on post-exposure treatment.

27,40

2. Zero Hunger Unhealthy: food insecurity and 
undernourishment rates were too high.

Win: food security might increase with reduced expenditures 
on dog bite treatments and reduced livestock losses due to 
dog attacks, rabies and potentially other diseases transmitted 
by carcasses not eaten by vultures (for example, anthrax)a.

27,40

3. Good Health and Well-being Unhealthy: millions of people bitten 
by dogs annually in India required 
post-exposure treatment. India also had 
the highest burdens of rabies infections 
and rabies-associated deaths in the world.

Win: hypothetically, vulture population restoration would 
reduce free-ranging dog populations, leading to fewer bites, 
fewer rabies cases and reduced premature death. Vultures 
might also reduce burdens of other diseases, such as anthrax, 
by faster carcass removalb.

27

4. Quality Education Unhealthy: fewer girls than boys in school 
at all levels of education.

Neutral: vulture conservation is not expected to affect 
education, unless indirectly through wealth or well-being.

40

5. Gender Equality Unhealthy: women held a relatively 
small proportion of parliament positions, 
composed <50% of the work force and 
so on.

Neutral: vulture conservation is not expected to affect gender 
equality, unless indirectly through wealth or well-being.

40

6. Clean Water and Sanitation Unhealthy: for example, in 2012, hundreds 
of millions of people living in India 
practiced open defaecation.

Win: vultures provide sanitation services by consuming 
carcasses (sources of some diseases), garbage waste, and 
human and livestock faeces.

29,41

7. Affordable and Clean Energy Not applicable Neutral: not applicable. -

8. Good Jobs and Economic 
Growth

Unhealthy: some livelihoods that were 
dependent on vulture services were 
experiencing hardships due to vulture 
declines.

Win: beyond the livestock industry, waste removal by vultures 
benefits some livelihoods (for example, livestock butchering, 
tanning, and bone collecting for fertilizer). Vultures can also 
provide ecotourism opportunities.

27,29

9. Industry, Innovation and 
Infrastructure

Not applicable Neutral: not applicable. -

10. Reduced Inequalities Unhealthy: the poor are disproportionally 
burdened by dog bites, rabies deaths and 
lost economic benefits from vultures.

Win: domestic dog management (for example, vaccination) is 
considered the gold standard rabies intervention by the World 
Health Organization (WHO) because it is likely the most 
effective and equitable intervention. Vulture conservation 
to control dog population dynamics might similarly reduce 
inequalities.

30

11. Sustainable Cities and 
Communities

Unhealthy: people living in lower-income 
neighbourhoods feel unsafe due to bite 
risks from domestic dogs with rabies. 
Additionally, in some places, sky burial 
practices used by the Parsis religion were 
impeded by vulture declines.

Win: if vulture restoration works to reduce dog populations 
(especially of feral dogs) through competition, dog bite risks 
should decline. Vulture restoration might also restore cultural 
and/or religious values associated with vultures, such as sky 
burials.

27

12. Responsible Consumption 
and Production

Not applicable Neutral: not applicable. -

13. Climate Action Not applicable Neutral: not applicable. -

14. Life Below Water Relatively unhealthy: no specific relevant 
indicators were available, but waste 
reaching waterways might have been 
relatively high when vultures declined.

Win: by consuming garbage waste and faeces, vultures might 
reduce pollution reaching waterways.

29

15. Life on Land Unhealthy: more than 95% of populations 
of three vulture species died from 
diclofenac poisoning in roughly a decade, 
altering ecosystem structure and 
functions.

Win: restored populations of three threatened vulture species; 
restored nutrient cycling through scavenging; reduced wildlife 
contacts and wildlife disease transmission at quickly removed 
carcasses. Potentially also reduced impacts on wildlife that 
dogs depredate or compete with.

27,28,31

16. Peace, Justice and Strong 
Institutions

Not applicable Neutral: not applicable. -

17. Partnerships for the Goals Not applicable Neutral: not applicable. -

For a detailed cost–benefits analysis, see ref. 27. aReplacement livestock non-steroidal anti-inflammatory drugs (NSAIDs) might be more expensive than diclofenac at first, potentially reducing livestock 
output for some people, but government subsidies for new NSAIDs would be cost-effective. bVulture restoration might increase air accidents, which would be a loss for human well-being, but it is unclear 
how large this risk is.

NAtuRe SuStAINABILIty | VOL 4 | APRIL 2021 | 298–304 | www.nature.com/natsustain 301

http://www.nature.com/natsustain


PersPective NaTUre SUSTaiNaBiliTy

to neutral; the outcome saturates with intervention intensity (for 
example, Fig. 4, Intervention Option 2). Furthermore, forest res-
toration might take decades, and resulting ecosystem services (for 
example, water purification) might not be achieved quickly, creating 
a large temporal lag in the correlation between forest restoration 
and human health benefits. Long-term outcomes are often the most 
cost-efficient, but they can be difficult to fund or implement if they 
require large initial buy-ins or long delays before benefits manifest. 
Because definitions based on short-term correlations alone might 
miss these complexities, our directions-based framework encom-
passes historical conditions and long-term futures.

An example with invasive rats in Hawai’i
Intervention planning, monitoring and evaluation are often accom-
plished using the ‘theory-of-change’ approach32,33. Using this pro-
cess, practitioners and stakeholders collaboratively describe project 
activities, short-term outputs, long-term outcomes and the causal 
relationships linking these entities in an explicit theory-of-change 
(TOC) diagram that illustrates what a successful intervention will 
look like (Fig. 5a). By making a few small changes to this work-
flow, practitioners can adapt this approach to our multi-outcome 
framework (Fig. 5a). In particular, after defining their baselines 
in time and space, all parties can think through their intervention 
options while considering multi-sector outputs and outcomes, like 
those for both human infectious disease control and conservation. 
Outcomes can then be compared to baselines, and outcome direc-
tions (win, neutral or lose) can be recorded on the TOC diagram. 
To illustrate this process, we show example TOC diagrams for two 
possible interventions that should reduce rat-associated diseases 
infecting people in Hawai’i, where both interventions involve a ‘win’ 
for human health, but the conservation outcomes differ between the 
interventions (Fig. 5).

Invasive rats cause problems for many stakeholders in 
Hawai’i (Fig. 3b)34–36. Each year, several people become sick with 
rat-associated infectious diseases, such as rat lungworm disease, 
toxoplasmosis and murine typhus. People can become infected via 
several transmission routes, such as parasite-contaminated veg-
etables or bites from flea vectors35. Invasive Polynesian, black and 
Norway rats (Rattus exulans, R. rattus and R. norvegicus) also eat 
endemic Hawaiian flora and fauna that evolved without rat preda-
tors (for example, a forest bird called the Oahu elepaio (Chasiempis 
ibidis) and a flowering plant called the superb cyanea (Cyanea 
superba))37,38 and agricultural crops such as sugarcane and macada-
mia nuts. This example shows the complexity in coupled human and 
natural systems where practitioners are seeking win–win solutions: 
there are multiple invasive rat species, conservation targets (one for 
each endemic species), human infectious disease targets (one for 
each parasite), targets in other sectors, and affected islands and/or 
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are connected. a, Vultures play important roles in nutrient cycles and 
carrion and refuse removal in India (1). When vultures are poisoned 
by the veterinary medicine diclofenac (2), free-ranging domestic dog 
populations might increase with food availability, leading to increased 
circulation of rabies within dog populations (3). Increased dog 
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pathogens (5), which accumulate faster in ecosystems without carrion 
and refuse removal by vultures. b, Larval rat lungworms are excreted 
from rats (1) in their faeces (2), which are then consumed by slugs (3). 
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because they consume human crops (for example, macadamia nuts (6)) 
and endemic species (for example, bird eggs (7) and seedlings (8)). The 
red arrows indicate infectious disease transmission connections and 
the blue arrows indicate connections that are not related to infectious 
disease transmission.
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Fig. 4 | Multiple interventions can be compared on the basis of not 
only on their qualitative outcomes, but also on their effect sizes and 
cost-effectiveness. The baseline conditions are the origin of this plot, and 
vectors indicate trajectories that result from investing in an intervention. 
The blue points show three win–win interventions with the same cost that 
vary in conservation and human health outcomes, compared to a lose–win 
intervention (grey point) with the same cost. Neutral outcomes are on the 
plot axes.
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habitats. We simplify the example below by summarizing all out-
comes into two outcome categories: one for rat-borne human infec-
tious diseases and one for rat-impacted endemic flora and fauna.

To use our framework, we first select appropriate baselines in 
time and space. We could select the historical human health and 
conservation baselines that existed 200 or 800 years ago, before 
black and Norway rats invaded and before Polynesian rats invaded, 
respectively. From those historical baselines (no rat-associated dis-
ease and no rat predation), both human health and endemic species 
have declined: a lose–lose scenario. However, to compare poten-
tial present-day intervention options, we instead use present-day 
human disease incidence and endemic species population sizes 
as our baselines. In particular, we consider these baselines to be 
mutually ‘unhealthy’ (Fig. 5b,c), because human disease incidence 
is above acceptable levels and many endemic species are threat-
ened with further declines and/or extinction due to rat predation. 
Therefore, this example is one where ‘sick care’ is required.

Human health alone could be improved through educational cam-
paigns to teach people about rat-associated disease risks and personal 
prevention measures, such as washing vegetables (Fig. 5b). Within 
weeks, practitioners could use surveys to measure self-reported 
changes in behaviour (Fig. 5b, Outputs). These behavioural changes 
should reduce human infection risks (Fig. 5b, Outcomes) and human 
disease burdens (Fig. 5b, human infectious disease direction = win), 
but would need to be maintained indefinitely, because potential 
transmission pathways from rats to people would still exist (for exam-
ple, infected rats and slugs would still persist). Similarly, because nei-
ther educational campaigns nor human behavioural changes would 
reduce rat population sizes, this intervention would have no effect 
on rat predation intensity on wildlife or crops (Fig. 5b, conservation 
direction = neutral). This win–neutral intervention would be easy 
to implement and might save lives, but it represents a mixed-value 
dual-outcome scenario: the outcome value for human infectious 
disease control is positive (bad to better; win), whereas the outcome 

values for conservation and agriculture are negative (bad to equally 
bad; neutral from an unhealthy baseline). Therefore, educational 
campaigns alone are not the most beneficial intervention option.

Instead, there is at least one intervention that would be a mutu-
ally positive, win–win–win solution: invasive rat control or eradi-
cation (Fig. 5c). Rat control efforts use rat poison or traps36, and 
practitioners monitor success by measuring rat mortality or rat 
population sizes (Fig. 5c, Outputs), because rat populations are the 
shared driver linking human health, conservation and agriculture 
outcomes. In particular, over months to years, decreasing rat popu-
lations should reduce human disease (human health ‘win’), increase 
endemic species population sizes (conservation ‘win’), and increase 
crop production (agricultural ‘win’, not shown in Fig. 5c for simplic-
ity). However, this potential win–win–win could have non-targets 
effects, which could be anticipated and mitigated. For instance, rat 
poison can be eaten by other wildlife and accumulate in the food 
web, and thus poisoning might need to be substituted with rat trap-
ping in some contexts39. If non-target effects are avoided or mini-
mized, rat control has the potential to be more broadly beneficial 
than educational campaigns alone.

Conclusions
Whether evaluating an intervention with a few multi-sector targets 
or making many pairwise comparisons within an SDG target net-
work, deciding whether two targets represent a synergy, a trade-off 
or independent outcomes requires explicit definitions that can be 
shared within interdisciplinary teams. Here we present a nuanced 
guide for identifying and comparing nine possible interdependent 
and independent outcomes using a process that defines baselines, 
outcome directions (win, lose or neutral) and associated values. 
This framework can be used to identify and prevent lose–lose sce-
narios before they occur (akin to ‘preventative care’) or to identify 
good opportunities for win–win solutions where damage to human 
health and to ecosystems has already occurred (akin to ‘sick care’). 
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Fig. 5 | Planning and comparing interventions using theory-of-change diagrams. a–c, From mutually unhealthy baselines, we use a revised, 
multi-outcome, baseline- and direction-explicit theory-of-change (TOC) approach (a) to illustrate how two possible interventions would represent future 
win–neutral (b) and win–win (c) solutions for human health and conservation in Hawai’i. Further details could be added to these TOC diagrams to capture 
other outcomes (for example, poisoning non-target wildlife and reduced rat predation on agricultural crops).
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However, acting on the positive links between people and nature is 
just one way to safeguard future human well-being while preserv-
ing ecosystems and biodiversity; opportunities for positively val-
ued multi-sector outcomes might also be found where people and 
nature are not interconnected and/or where negative, trade-off links 
can be avoided or re-engineered. Comparing and contrasting the 
nine possible dual outcomes reveal more ways that funders, poli-
cymakers, researchers and practitioners can intervene to accelerate 
progress towards the SDGs.
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